Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisione Revisione precedente
insieme_continuo [2014/10/17 15:34]
admin
insieme_continuo [2015/07/09 08:44] (versione attuale)
admin
Linea 9: Linea 9:
 Gli insiemi [[:numeri_naturali|$N$]] e [[:numeri_interi|$Z$]] non sono continui perchè sono solo [[:insieme_ordinato|insiemi ordinati]]; sono però [[:insieme_discreto|discreti]]. Gli insiemi [[:numeri_naturali|$N$]] e [[:numeri_interi|$Z$]] non sono continui perchè sono solo [[:insieme_ordinato|insiemi ordinati]]; sono però [[:insieme_discreto|discreti]].
  
-L'insieme [[:numeri_razionali|$Q$]] è [[:insieme_ordinato|ordinato]], è [[:insieme_denso|denso]], ma non è continuo perchè non è un [[:insieme_completo|completo]]. In termini semplici possiamo comprendere questo ricordando che, pur essendo [[:insieme_denso|denso]], [[:numeri_razionali|$Q$]] non ricopre tutti i punti della retta reale, perchè tra i suoi elementi vi sono degli spazi liberi che sono occupati dagli [[:numeri_irrazionali|irrazionali]]. E infatti ha la [[:potenza_del_numerabile|potenza del numerabile]].+L'insieme [[:numeri_razionali|$Q$]] è [[:insieme_ordinato|ordinato]], è [[:insieme_denso|denso]], ma non è continuo perchè non è [[:insieme_completo|completo]]. In termini semplici possiamo comprendere questo ricordando che, pur essendo [[:insieme_denso|denso]], [[:numeri_razionali|$Q$]] non ricopre tutti i punti della retta reale, perchè tra i suoi elementi vi sono degli spazi liberi che sono occupati dagli [[:numeri_irrazionali|irrazionali]]. E infatti ha la [[:potenza_del_numerabile|potenza del numerabile]].
  
 L'insieme $R$ dei [[:numeri_reali|numeri reali]] è continuo. L'insieme $R$ dei [[:numeri_reali|numeri reali]] è continuo.
  
 {{tag>matematica insiemi}} {{tag>matematica insiemi}}